

CONTO D1

Single Phase Din Rail Energy Meter Installation Manual

Description	3
Application	3
Dangers and Warnings	4
Preliminary Operations	5
Presentation	5
Installation	6
Communication	7
Programming	8
Use	10
Technical Specifications	13
Conformity and Certifications	14
Appendix	15

DESCRIPTION

The CONTO D1 45A series is an advanced multifunction single phase energy monitoring solution with optional outputs such as pulses, RS485 RTU Modbus, Mbus and KWh meter. Equipped with scroll display button for ease of navigation through the various parameters. Housed for DIN rail mounting, IP51 protection.

Certified in the UK according to EU Directive 2014/32/EU.

MID certificate number 0120 / SGS0141.

Model	Version	Display	Measurement	Outputs
CE1D45A0	Basic	LCD	kWh	No
CE1D45AP	Pulse	LCD with Backlight	kWh	Pulse
CE1D45AMB	ModBus	LCD with Backlight	Multi-parameters	Impulsi & RS485
CE1D45AM	Mbus	LLCD with Backlight	Multi-parameters	Impulsi & Mbus

Model	Version	Display	Measurement	Outputs
CE1DMID45AP	Pulse	LCD with Backlight	kWh	Pulse
CE1DMID45AMB	ModBus	LCD with Backlight	Multi-parameters	Pulses & RS485
CE1DMID45AM	Mbus	LCD with Backlight	Multi-parameters	Pulses & Mbus

CONTENTS

DESCRIPTION

DANCEDE ANI

WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

CUMMINICATION

PROGRAMMING

....

TECHNICAL

CONFORMITY AND CERTIFICATION

APPENDIX

APPLICATION

The energy-meters are used to measure single-phase applications like residential, utility and Industrial. The unit measures and displays various important electrical parameters. It equipped with a white back-lighted LCD screen for perfect reading (only LCD for Basic version). Bi-directional energy measurement makes it a good choice for solar PV energy metering. The compact design and din rail installation provides an easy and economical solution for your metering demand.

DESCRIPTION

APPLICATION

PRESENTATION

INSTALLATION COMMUNICATION

PROGRAMMING

CONFORMITY AND CERTIFICATION

APPENDIX

DANGERS AND WARNINGS

Information for your own safety

This manual does not contain all of the safety measures for operation of the equipment (module, device), because special operating conditions, and local code requirements or regulations may necessitate further measures. However, it does contain information which must be read for your personal safety and to avoid material damages. This information is highlighted by a warning triangle and is represented as follows, depending on the degree of potential danger.

Qualified personnel

Operation of the equipment (module, device) described in this manual may only be performed by qualified personnel. Qualified personnel in this manual means person who are authorized to commission, start up ground and label devices, systems and circuits according to safety and regulatory standards.

Warning

This means that failure to observe the instruction can result in death, serious injury or considerable material damage.

Caution

This means hazard of electric shock and failure to take the necessary safety precautions will result in death, serious injury or considerable material damage.

Proper handling

The equipment (device, module) may only be used for the application specified in the catalogue and the user manual, and only be connected with devices and components recommended and approved by IME.

- Use only insulating tools
- Do not connect while circuit is live (hot)
- Place the meter only in dry surroundings
- Do not mount the meter in an explosive area or expose the meter to dust, mildew and insects
- · Make sure the used wires are suitable for the maximum current of this meter
- Make sure the AC wires are connected correctly before activating the current/voltage to the meter
- Do not connect the meter to a 3 phase 400VAC network
- · Do not touch the meter connecting clamps directly with your bare hands, with metal, blank wire or other material as you may get an electrical shock
- Make sure the protection cover is placed after installation
- Installation, maintenance and reparation should only be done by qualified personnel
- Never break the seals and open the front cover as this might influence the functionality of the meter, and will avoid any warranty
- · Do not drop or allow physical impact to the meter as there are high precision components inside that may break

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

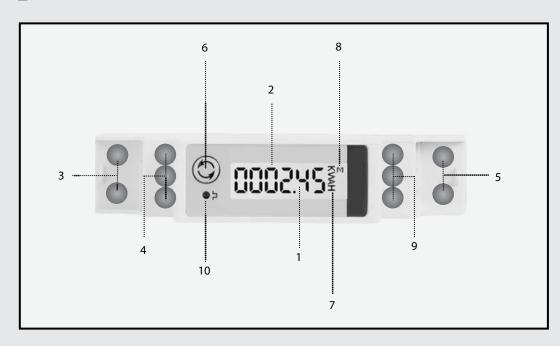
INSTALLATION

COMMUNICATION

PROGRAMMING

CONFORMITY AND CERTIFICATION

APPENDIX


PRELIMINARY OPERATIONS

To ensure the safety of personnel and equipment, it is imperative to thoroughly review the contents of this booklet prior to operating the machine.

Upon receipt of the box containing the device, it is essential to verify the following points:

- the condition of the packaging
- the lack of damage or breakage resulting from transportation
- the correlation between the appliance code and the ordered code
- the inclusion of both the item and the instruction sheet in the packaging

PRESENTATION

- 3 Line
- 2 Values
- 7 Measurement unit
- 4 Pulse Output
- 1 LCD
- 6 Scroll display
- 5 Neutral
- 8 Energy type
- 9 Communication
- 10 Metrological LED

Note: For further information on other meter variants - models with pulse output only or without any features - please see the 'Wiring diagrams' section

6

INSTALLATION

Dimensions and Prescriptions

 $\label{lem:maintain} \mbox{ Maintain distance from systems that produce electromagnetic disturbances.}$

CONTENTS

DESCRIPTION

APPLICATION

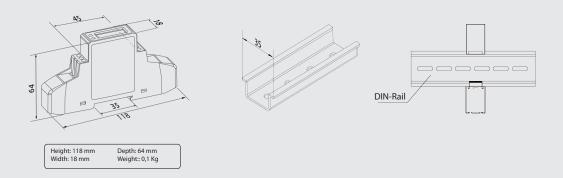
WARNINGS

PRELIMINARY OPERATIONS

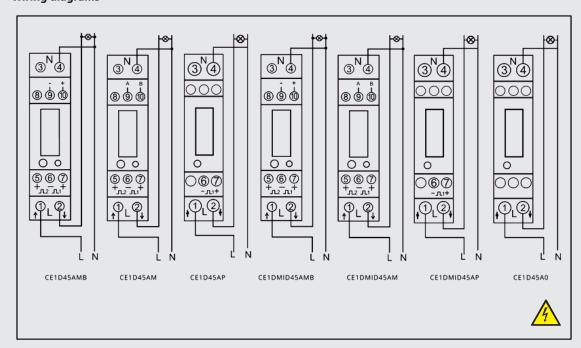
PRESENTATION

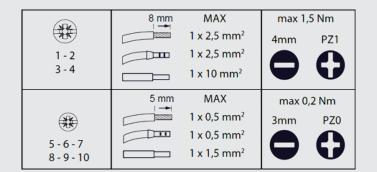
INSTALLATION

COMMUNICATION


PROGRAMMING

USE


SPECIFICATION


CONFORMITY AND CERTIFICATION

APPENDIX

Wiring diagrams

DESCRIPTION

APPLICATION

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

CONFORMITY AND CERTIFICATION

APPENDIX

COMMUNICATION

The meter is equipped with pulse output, which is fully isolated from the inside circuit. That generates pulses in proportion to the measured energy. The pulse output is polarity dependent, passive transistor output requiring an external voltage source for correct operation. For this external voltage source, the voltage shall be 5-27VDC, and the maximum input current shall be 27mA DC.

ATTENTION: Pulse output must be fed as shown in the wiring diagram on the left. Scrupulously respect polarities and the connection mode. Opto-coupler with potential-free SPST-NO Contact.

Contact Range: 5-27 V DC Max. Current input: 27 mA DC

Pulse output for CE1D45AP/CE1DMID45AP:

Pulse constant: 1000imp/kWh; Pulse width: 80ms

Pulse Output for CE1D45AMB/CE1DMID45AMB/CE1D45AM/ CE1DMID45AM:

Mbus and ModBus vers. provide two pulse outputs. Both pulse outputs are passive type. Pulse output 1 is configurable. The pulse output can be set to generate pulses to represent total/import/export kWh or kVArh.

The default is export kWh. Pulse width: 50(default)/100/200 ms.

The pulse constant can be set to: 1000(default)/100/10/1imp/kWh/kVArh.

Pulse output 2 is non-configurable. It is fixed to import kWh.

The constant is 1000imp/kWh. Pulse width: 100ms.

RS485 Output for CE1D45AMB/CE1DMID45AMB:

The meter provides a RS485 port for remote communication. Modbus RTU is the protocol applied.

For Modbus RTU, the following RS485 communication parameters can be configured via Modbus communication or from the Set-up Mode.

- · Baud rate: 2.4k, 4.8k, 9.6k, 19.2k, 38.4k bps
- · Parity: None/Even/Odd
- Stop bits: 1 or 2
- · Modbus Address: 001 to 247

Default parameters for communication:

- Baud rate: 19.2k bps
- · Parity: Even
- Stop bit: 1
- Modbus address: 0x05

Mbus Communication for CE1D45AM/CE1DMID45AM - EN13757-3:

The meter provides an Mbus port for remote communication. The protocol fully comply with EN13757-3.

The following communication parameters can be configured via Mbus communication or from the Set-up Mode.

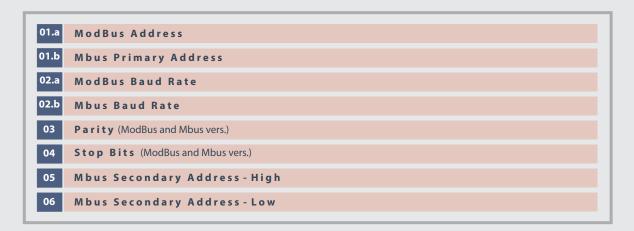
- Baud rate: 600, 1200, 2400, 4800, 9600 bps
- · Parity: None/Even/Odd
- · Stop bits: 1 or 2
- · Mbus primary address: nnn 3 digits number from 001 to 250
- Mbus secondary address: 00 00 00 00 to 99 99 99

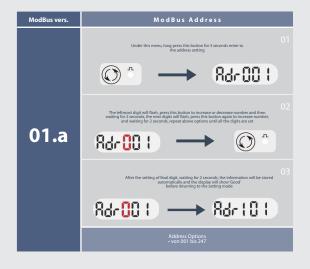
Default parameters for communication:

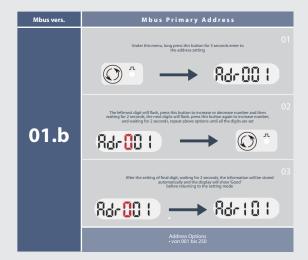
- · Baud rate: 2400 bps
- · Parity: Even
- · Stop bit: 1
- · Mbus primary address: 0x01
- Mbus secondary address: last 8 digits of SN

LE15704AA_EN

06/25 7




PROGRAMMING


■ Key Guide

Settings Screens

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

TECHNICAL SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

DESCRIPTION

APPLICATION

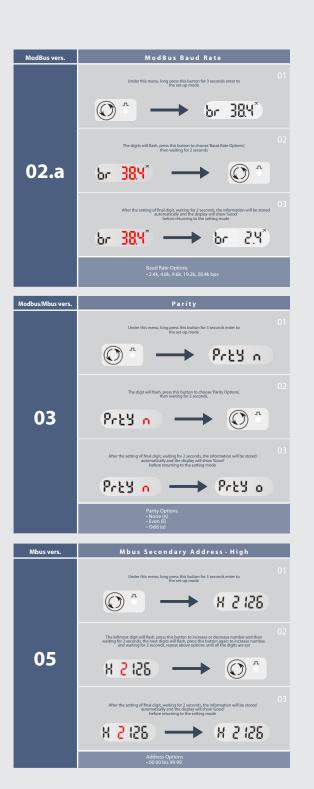
DANGERS AND WARNINGS

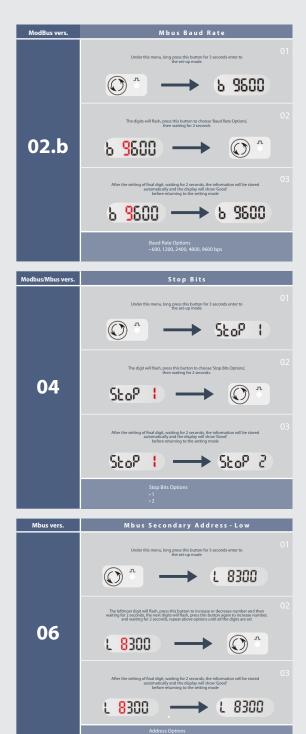
PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION


PROGRAMMING


USE

TECHNICAL SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

USE

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

TECHNICAL SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

■ Display Start-up Screens

01.a	Inizialization-FullScreen (Basic and Pulse vers.)
01.b	Inizialization-FullScreen (ModBus and Mbus vers.)
02.a	Software Version (All models)
02.b	Software Version (Basic and Pulse vers.)
02.c	Software Version (All models)
03	CRC High Bit (Tuttiimodelli)
04	CRC Low Bit (Tutti i modelli)
05.a	Active Energy (Basic and Pulse vers.)
05.b	Total Active Energy (ModBus and Mbus vers.)

Basic/Pulse vers.	Inizialization - FullScreen
01.a	Inizialization - Full screen
Tutti i modelli	Software Version

Tutti i modelli	CRC Low Bit
04	CL8E65 CRC low bit

ModBus/Mbus vers.	Total Active Energy	
05.b	057872	

DESCRIPTION

APPLICATION

DANIGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

USE

TECHNICAL

SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

Display Screens

01.a	Active Energy (Basic and Pulse vers.)
01.b	Total Active Energy (ModBus and Mbus vers.)
02	Import Active Energy (ModBus and Mbus vers.)
03	Export Active Energy (ModBus and Mbus vers.)
04	Total Reactive Energy (ModBus and Mbus vers.)
05	Voltage (ModBus and Mbus vers.)
06	Current (ModBus and Mbus vers.)
07	Active Power (ModBus and Mbus vers.)
08	Frequency (ModBus and Mbus vers.)
09	Power Factor (ModBus and Mbus vers.)
10.a	Modbus Address
10.b	Mbus Primary Address
11.a	ModBus BaudRate
11.b	Mbus Baud Rate
12	Parity (ModBus and Mbus vers.)
13	Mbus Secondary Address - High
14	Mbus Secondary Address - Low

Basic/Pulse vers.	Active Energy
01.a	Active energy

ModBus/Mbus vers.	Import Active Energy		
02	Import active energy		

ModBus/Mbus vers.	Total Reactive Energy	
04	Total reactive energy	

03	000 WD [§] 1	

ModBus/Mbus vers.	Voltage							
05	235.3*							

ModBus/Mbus vers.	Power Factor							
09	þķ	100						

Mbus vers.	M b u s P r i m a r y A d d r e s s								
10.b	Mbus primary address								

Mbus vers.	Mbus Baud Rate							
11.b	P 5400							

ModBus/Mbus vers.		Par	ity
12	Prey	n	

Mbus vers.	Mbus Secondary Address - High							
13	Mbus secondary address - High							

Mbus vers.	Mbus Secondary Address - Low
14	Mbus secondary address

1000/100/10/1imp/kWh/kVArh (conf.)

1000imp/kWh (no conf.)

99999.9kWh/kVArh

13

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

TECHNICAL
SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

TECHNICALSPECIFICATIONS

	Display	All devices are equipped with a LCD with
	Туре	backlit, except for model CE1D45A0, which features a standard LCD display.
CONTENTS	Caratteristiche elettriche	230V
	Voltage AC (Un)	176~276V AC (Basic/Pulse vers.)
	Voltage range	100~277V AC (Modbus/Mbus vers.)
		0.15-5(45)A (Max. 45A)
	Current input	<2W/10VA
DESCRIPTION	Voltage Circuit	<1VA
	Current Circuit	50/60Hz
APPLICATION	Frequency	4KV for 1 minute
	AC voltage withstand	6KV~1.2uS waveform
DANGERS AND	Impulse voltage withstand	30lmax for 0.01s
WARNING5	Oversome with stand	1000/100/10/1imp/kWh/kVArh (conf)

Pulse output 2 Max. Reading

Pulse output 1

Overcurrent withstand

Accuracy (IEC/EN61557-12)

cl. 0.5 Voltage cl. 0.5 Current Frequency cl. 0.2 Power factor cl. 1 cl. 1 Active power Reactive power cl. 1 cl. 1 Apparent power

Environment

23°C±2°C Reference temperature Installation category CATIII **Relative Humidity** 0 to 95%, non-condensing

Altitude Up to 2000m Dry Location Warm up time 3s

Mechanical characteristics

Weight 0.1 kg

18x118x64 (WxHxD) DIN 43880 Din rail dimensions

DIN rail 35mm Mounting (wall or Mounting cabinet mounting)

Protection class:

- Terminal protection index against solid bodies and liquids IP20 (IEC/EN 60529). Housing protection index against solid bodies and liquids IP51 (IEC/EN 60529). Self-extinguishing UL94V-0 Material Class II

Front panel with cover plate Level of pollution

Protection class against external mechanical impacts IK02 (IEC/EN 62052-31)

Mechanical environment M1 Electromagnetic environment E2

Climatic characteristics

T min. = $-40 \,^{\circ}$ C: T max. = $+70 \,^{\circ}$ C Operating room temperatures Storage room temperatures T min. = - 40 $^{\circ}$ C; T max. = + 80 $^{\circ}$ C

Diagnostic

Current output diagnostic Open circuit Voltage output diagnostic Low output load

CONFORMITY AND CERTIFICATIONS

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

USE

TECHNICAL
SPECIFICATION

CONFORMITY AND CERTIFICATION

APPENDIX

European Directives: 2014/30/EU 2014/32/EU 2014/35/EU

According to the standard: Low voltage Directive IEC/EN 61010-1. EMC compatibility: EN/IEC 62052-11 / EN 50470-3

Active energy: Class 0.5 Wh (EN 62053-21) Class C (EN 50470-3) (MID version) Reactive energy: Class 2 varh (EN 62053-23)

Respecting the environment - Conformity with CEE Directives: Compliance with the 2011/65/EU Directive, as modified by the 2015/863/EU Directive (RoHS), on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Conformity with the REACH Regulation (1907/2006): at the date of publication of this document no substance in the annex XIV is found in these products.

RAEE Directive (2012/19/EU): the sale of this product includes a contribution to the appointed environmental bodies of each European country incharge of handling, at the end of their life, the products falling within the scope of the EU Directive on Electrical and Electronic Equipment Waste.

Plastic materials:

Plastic materials without Halogens.

Parts marking according to standards ISO 11469 and ISO 1043.

Packaging:

Packaging designed and produced in accordance with Decree 98-638 of 20/07/98 and Directive 94/62/CE.

APPENDIX

Mbus protocol

1. Initialization slave

Format:

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

CONFORMITY AND CERTIFICATION

APPENDIX

Start	C Field	A Field	Check Sum	Stop
10	40	XX	CS	16

XX=1 to FF

The address field serves to address the recipient in the calling direction, and to identify the sender of information in the receiving direction. The size of this field is one Byte, and can therefore take values from 0 to 255. The addresses 2 to 250 can be allocated to the individual slaves, up to a maximum of 250. Unconfigured slaves are given the address 1 at manufacture and as a rule are allocated one of these addresses when connected to the M-us. The addresses 254 (FE) is used to transmit information to all participants (Broadcast). The latter case naturally results in collisions when two or more slaves are connected, and should only be used for test purposes. The address 253 (FD) indicates that the addressing has been performed in the Network Layer instead of Data Link Layer, the FD used when using the second level address. The remaining addresses 251 and 252 have been kept for future applications.

1.1 How to initialize a meter which you don't know the address

Master to slave: 10 40 fe 3e 16 Slave to master: e5 (success)

1.2 Remove the secondary address matching symbol of all the meters on BUS.

Master to slave: 10 40 fd 3d 16

Slave: No answer

1.3 How to Initialize a Slave with specific address

Example: Address 02

Master to slave: 10 40 01 41 16

Slave to master: e5

2. How to Set Baud Rate

2.1 Point to point baud-rate setting command format(Control Frame)

Format

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

CONFORMITY AND CERTIFICATION

Start	L-Field	L-Field	Start	C-Field	A-Field	CI-Field	Check Sum	Stop
68H	03	03	68H	53/73	fe	b8~bd	CS	16

L - Field-----Byte length

C - Field-----ControlField,FunctionField

A - Field-----AddressField

CI - Field-----control information field

Check Sum----The Check Sum is calculated from the arithmetical sum of the data mentioned above, without taking carry digits into account.

B9-----600

BA-----1200

BB-----2400

BC-----4800

BD-----9600

Example:

(1) How to change Baudrate to 2400bps Master to slave: 68 03 03 68 53 fe bb 0c 16

Slave to master: e5

(2) How to change Baudrate to 9600

Master to slave: 68 03 03 68 53 fe bd 0E 16

Slave to master: e5

3. How to Set primary address

3.1 How to set the address of a Slave to 02

Format:

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

CONFORMITY AND CERTIFICATION

Start	L-Field	L-Field	Start	C-Field	A-Field	CI-Field	DIF	VIF	Address Data	Check Sum	Stop
68H	06	06	68H	53/73	fe	51	01	7A	XX	CS	16

Example:

Master to slave: 68 06 06 68 53 fe 51 01 7a 02 1e 16

Slave to master: e5

3.2 How to change Address from 02 to 03

Formato:

Start	L-Field	L-Field	Start	C-Field	A-Field	CI-Field	DIF	VIF	Address Data	Check Sum	Stop
68H	06	06	68H	53/73	XX	51	01	7A	YY	CS	16

XX--current primary Address

YY--new primary address

Master to slave: 68 06 06 68 73 02 51 01 7A 03 42 16

Slave to master:e5

3.3 How to Set primary address to 02 by using secondary address

For example:

secondary address: 12345678 **Step1 -** Initialize the slave

Master to slave: 10 40 fe 3e 16

Slave to master: e5

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRESENTATION INSTALLATION COMMUNICATION PROGRAMMING

CONFORMITY AND CERTIFICATION

Step2 - Check the secondary address. After receiving the command, the Slave will check if the secondary address in the command is same with its secondary address or not.

Master to slave: 68 0B 0B 68 73 FD 52 78 56 34 12 FF FF FF D2 16

FD---the primary Address used when you use secondary address to read data.

78 56 34 12 --- the meter's secondary address is 12 34 56 78

Master to slave: e5 (success)

Step3 - Change the primary address to 02

Master to slave: 68 06 06 68 73 FD 51 01 7A 02 3D

02---- new primary address

Slave to master: e5

4. Set the complete identification of the slave

(ID=12345678, Man=166E (PAD), Gen=1, Med=02 (energy))

Start	L- Field	L- Field	Start	C- Field	A- Field	CI- Field	DIF	VIF	Identification No	Manufacturer ID	Generation	Medium	Check Sum	Stop
68H	0D	0D	68H	53/73	fe	51	07	79	4 byte	2 byte	1 byte	1 byte	CS	16

Master to slave: 68 0D 0D 68 53 FE 51 07 79 78 56 34 12 24 40 01 02 9D 16

Slave to master: e5

5. How to read out of Energy information

5.1 Use primary address 01 to read Energy information

Format:

Master to slave: 10 7B/5B adr cs 16 Slave to master: Variable data structure

Example: 10 7B 01 7C 16

5.2 How to read out a meter's Energy information by using broadcast address 254 (FE)

Master to slave: 10 7b/5b fe cs 16 Slave to master: Variable data structure

Example: 10 5B FE 59 16

For example:

Secondary address: 12 34 56 78

Step1 - Initialize the slave

Master to slave: 10 40 fe 3e 16 Slave to master: No answer

Step2 - Check the secondary address.

After receiving the command, the Slave will check if the secondary address in the command is same with its secondary address or not.

5.3 How to read out the meter's Energy information by using secondary Address

Master to slave:68 0b 0b 68 73 fd 52 78 56 34 12 FF FF FF d2 16

Slave to master: E5

Step3 - Read the Energy information

Master to slave: 10 7b fd 78 16

Slave to master:

DIF====Coding of the Data Information Field VIF====Codes for Value Information Field

	Parameters	data structure	Notice
bytes			
4	header telegram	68 len len 68	header of RSP_UD telegram
3		08 0A 72	C field =08 address A CI field 72
4		78 56 34 12	Identification number =12345678
2		6E 16	Manufacturer ID 166E
1		01	Generation 1
1		02	electricity
1		xx	ACCESS NO
1		00	STATUS
2		00 00	Signature
8	Current total active energy	8C	DIF: 8digit BCD
	9,	80	DIFE:
		40	DIFE:unit 2
		04	VIF: 10wh (0.01Kwh)
		78 56 34 12	123456.78kwh
6	Current import active energy	0C	DIF: 8digit BCD
	, can am mpont according g	04	VIF: 10wh (0.01Kwh)
	Current export active energy	78 56 34 12	123456.78kwh
7	Current export active energy	8C	DIF: 8digit BCD
	can on port active energy	40	DIFE:unit 1
		04	VIF: 10wh (0.01Kwh)
		78 56 34 12	123456.78kwh
10	Current resettable total active	8C	DIF: 8digit BCD
		80	DIFE
	one.gy	40	DIFE:unit 2
		84	VIF: 10wh (0.01Kwh)
		ff	VIFE next byte is manufacturer
		"	specific
		72	VIFE resettable energy
		78 56 34 12	123456.78kwh
8	Current resettable impact	0C	DIF: 8digit BCD
0		84(1)	VIF: 10wh (0.01Kwh)
	Current import active energy Current export active energy Current resettable total active energy Current resettable import active energy	ff	
		П	· · · = · · · · · · · · · · · · · · ·
		72	specific
			VIFE resettable energy
		78 56 34 12	123456.78kwh
9	Current resettable export	8C	DIF: 8digit BCD
	active energy	40	DIFE:unit 1
		84	VIF: 10wh (0.01Kwh)
		ff	VIFE next byte is manufacturer
			specific

CONTENTS

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

COMMUNICATION

PROGRAMMING

TECHNICAL

CONFORMITY AND CERTIFICATION

CERTIFICATION

APPENDIX

DESCRIPTION

APPLICATION

DANGERS AND WARNINGS

PRELIMINARY OPERATIONS

PRESENTATION

INSTALLATION

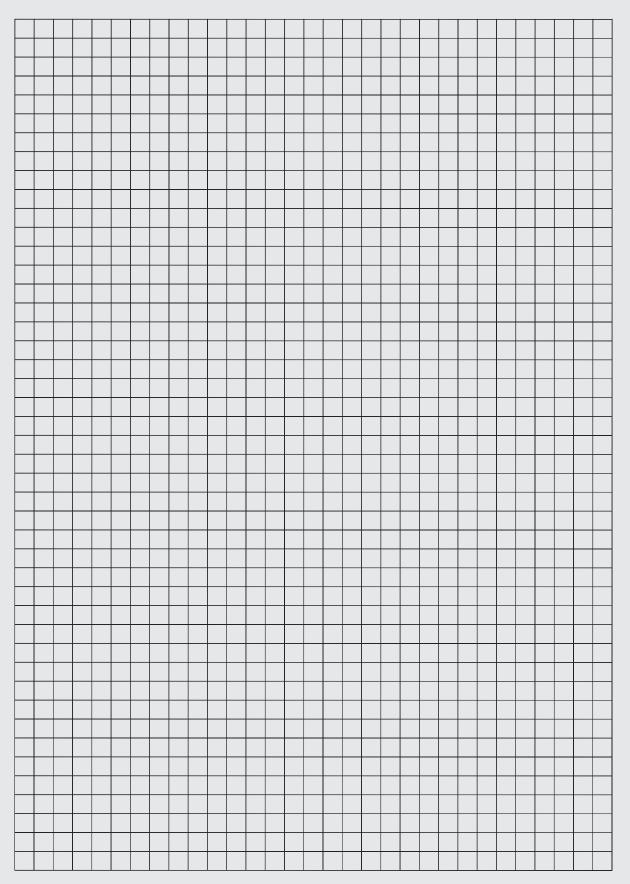
COMMUNICATION

PROGRAMMING

USE

SPECIFICATION

CONFORMITY AND CERTIFICATION


APPENDIX

		72	VIFE resettable energy
		78 56 34 12	123456.78kwh
9	Current total reactive energy	8C	DIF: 8digit BCD
		80	DIFE
		40	DIFE:unit 2
		FB	VIF:fB
		02	VIFE: 1 KVArh
		78 56 34 12	12345678kVarh
7	Current import reactive	0C	DIF: 8digit BCD
	energy	FB	VIF:fB
		02	VIFE: 1 KVArh
		78 56 34 12	12345678kVarh
8	Current export reactive	8C	DIF: 8digit BCD
	energy	40	DIFE:unit 1
	J	FB	VIF:fB
		02	VIFE: 1 KVArh
		78 56 34 12	12345678kVarh
11	Current total resettable	8C	DIF: 8digit BCD
	reactive energy	80	DIFE
		40	DIFE:unit 2
		FB	VIF:fB
		82	VIFE: 1KVArh
		FF	VIFE next byte is manufacturer
			specific
		72	VIFE resettable energy
		78 56 34 12	12345678kVarh
9	Current resettable import	0C	DIF: 8digit BCD
	reactive energy	FB	VIF:fB
	,	82	VIFE: 1KVArh
		FF	VIFE next byte is manufacturer
			specific
		72	VIFE resettable energy
		78 56 34 12	12345678kVar
10	Current resettable export	8C	DIF: 8digit BCD
	reactive energy	40	DIFE:unit 1
	,	FB	VIF:fB
		82	VIFE: 1KVArh
		FF	VIFE next byte is manufacturer
			specific
		72	VIFE resettable energy
		78 56 34 12	12345678kVar
1	CHECK SUM	CS	
1	End	16	

(1) VIF=FB,VIFE=01,unit = MWH

Note

BTicino S.p.A. Viale Borri, 231 21100 Varese (VA) ITALY www.bticino.com

BTicino retains the right to modify the contents of this booklet at any time and to communicate any changes in any form or manner.